SD-Layer: Stain Deconvolutional layer for CNNs in Medical Microscopic Imaging
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Motivation SD-Layer
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Versus Fig 2: lllustration of SD-Layer. @'s are learnable filters of dimension 1 X 1 X 3
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1. AlexNet and T-CNN with SD-Layer prefixed (SVD initialized)

This poster presents a stain deconvolutional layer
affixed at the front of a CNN. It transforms
training on RGB intensities to training on stain
absorption quantities.

AlexNet 87.9 88.12

Key Idea T-CNN [3] 92.48  92.7

Staining chemicals combine linearly in the optical AlexNet + SD-Layer 88.5 88.32
density (OD) colorspace according to the Beer T-CNN + SD-Layer 932 93 08
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Table 1 : 5-fold cross validated performance of SD-Layer

4
Beer Lambert’s Law 2. Performance of frozen v/s trainable stain vector S.

The Imaging model (1) * Trainable S outperforms frozen S by a large margin
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5 in channel Fig 3: Test accuracy v/s epochs, evaluated on a single fold

3. Effect of Initialization of S on performance
The optical density (OD) colorspace (2) « SVD based initialization [2] works best
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In Matrix Notation (3) Fig 4: Test accuracy v/s epochs, for difference initializations.
(n)
o - a s (8)
References , | |
[ MN x 3] [MNx3] [3x3] Fig 5: The left column is an example image of a

[1] Ruifrok, Arnout C., and Dennis A.

lymphoblast. (a) is the original image, (b)-(d) are
Johnston. "Quantification of histochemical ymp @) 5 ge, (b)-{d)

o stain deconvolved images wusing stain vector
Key Insight staining by color obtained through SVD, (e)-(g) are the stain

deconyolgtion." Analyti.cal and deconvolved images using stain vector after training
Matrix multiplication can be viewed equivalently | | quantitative cytology and histology 23.4 T-CNN + SD-Layer for 300 epochs. The right column

as a convolution between rows and columns of (2001): 291-299.
the multiplying matrices.

are corresponding images for an example

lymphocyte.
[2] Macenko, Marc, et al. "A method for
0 s~ 2 normalizing histology  slides  for
| | o oaeh 0796 —o.3ga] | | quantitative analysis." Biomedical Imaging: Acknowledgement
10-561 0.929 0.433] [:g;ggg 0 572 _'3?763"1‘:[‘1'169"“""165“""148] from Nano to Macro, 2009. ISBI'09. IEEE Authors gratefully acknowledge the
T —Qz— _('1: lnternationa/SympOSium on. IEEE, 20009. research funding Support (Grant Number:
I | 1(7)/2014-ME&HI) from the Ministry of
[0.561 0.929 0.4334] [0.561 0.929 0.4334] [0.561 0.929 0.4334] 3] Andrearnczy!(’ Vmc.ent, and  Paul .F' Communication and |T, Govt
~0.464 —0.805 —0.369] [-0.796 0.196 0.572] [0.388 0.560 —0.731] Whelan. Using filter banks In of India for this research
| ' - | - | | convolutional neural networks for texture
0, ; s e e - work.
classification. Pattern Recognition

Fig 1 : Matrix multiplication as convolution.
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