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Motivation

This poster proposes a new activation

function that leverages two specific

advantages of previous functions

1. Optimal parameter tunability: like the

RELU function

2. Better noise robustness: similar to ELU

function

Past Activation Functions

1. RELU [1]:

𝒇 𝒛 = ቊ
𝒛, 𝒛 > 𝟎
𝟎, 𝒛 ≤ 𝟎

• 6 times faster convergence than

tanh.

• Unit gradient in the positive plane

obviates exploding/vanishing

gradients.

• Zero gradient in the negative plane

leads to de-activated neurons.

2. L-RELU [2]:

𝒇 𝒛 = ቊ
𝒛, 𝒛 > 𝟎
𝜶𝒛, 𝒛 ≤ 𝟎

,

where 𝛼 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• Small gradient in negative plane

solves the problem of de-activated

neurons.

• optimal 𝜶 needs to be set by hand.

3. P-RELU [3]:

𝒇 𝒛 = ቊ
𝒛, 𝒛 > 𝟎
𝜶𝒛, 𝒛 ≤ 𝟎

,

where 𝛼 𝑙𝑒𝑎𝑟𝑛𝑡 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒
𝑑𝑎𝑡𝑎 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

• The 𝜶 parameter of L-RELU is

allowed to be learnt from the data.

4. ELU [4]:

𝒇 𝒛 = ቊ
𝒛, 𝒛 > 𝟎
𝜶 𝒆𝒛 − 𝟏 , 𝒛 ≤ 𝟎

,

where 𝛼 𝑖𝑠 𝑎 𝑠𝑚𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• The exponential function in ELU

provides a noise robust

deactivation state for large

negative inputs

• optimal 𝜶 needs to be set by hand.

P-TELU Activation Function

The forward Pass The backward Pass

𝒇 𝒛 = ቊ
𝒛, 𝒛 > 𝟎
𝜶. 𝐭𝐚𝐧𝐡 𝜷. 𝒛 , 𝜶, 𝜷 ≥ 𝟎

,

where 𝛼 and 𝛽 are learnt from the

data distribution.  

𝒅𝑳

𝒅𝜶𝒊,𝒋
=

𝒅𝑳

𝒅𝒇𝒊,𝒋
×

𝒅𝒇𝒊,𝒋

𝒅𝜶𝒊,𝒋

𝒅𝑳

𝒅𝜷𝒊,𝒋
=

𝒅𝑳

𝒅𝒇𝒊,𝒋
×

𝒅𝒇𝒊,𝒋

𝒅𝜷𝒊,𝒋

𝒅𝒇𝒊,𝒋

𝒅𝜶𝒊,𝒋
= ൝

𝟎, 𝒛𝒊,𝒋 > 𝟎

𝒕𝒂𝒏𝒉 𝜷𝒊,𝒋. 𝒛 , 𝒛𝒊,𝒋 ≥ 𝟎

𝒅𝒇𝒊,𝒋

𝒅𝜷𝒊,𝒋
= ൝

𝟎, 𝒛𝒊,𝒋 > 𝟎

𝜶 × 𝒛𝒊,𝒋 × 𝒕𝒂𝒏𝒉 𝜷𝒊,𝒋. 𝒛 , 𝒛𝒊,𝒋 ≥ 𝟎

Derivative of the loss w.r.t 

𝛼 of the 𝑗𝑡ℎ neuron in 

layer ‘i’.

Output of the 𝑗𝑡ℎ

neuron in layer ‘i’.

Net Input to the 𝑗𝑡ℎ

neuron in layer ‘i’

(1)

(2)

(3)

(4)

Fig 1: Graphical comparison of

various activation functions

Experiments and Results
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Fig 2(a): KerasNet [5]

Performance of KerasNet

Function CIFAR-10 CIFAR-100
RELU 85.45 56.56

ELU 85.84 57.97

P-RELU 86.26 58.75

P-TELU 86.5 59.76

Table 1: Comparison of functions

Fig 3: Test accuracy on CIFAR-100

Performance of ResNet-76

CNN models considered

Function CIFAR-10 CIFAR-100
RELU 90.77 70.06

ELU 91.26 69.05

P-RELU 90.99 69.05

P-TELU, with 
𝛼, 𝛽 ≥ 0

91.52 70.13

P-TELU, with 
𝛼, 𝛽 ≥ 0.01

91.16 70.63

Fig 2(b): ResNet-76 [6]

Table 2: Comparison of functions

Fig 4: Layer wise average of

𝛼, 𝛽 𝛼, 𝛽 ≥ 0 calculated on a ResNet-

76 model fitted with P-TELU
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