

# P-TELU: Parametric Tan Hyperbolic Linear Unit Activation for Deep Neural Networks

Rahul Duggal & Anubha Gupta, SBILab, Dept. of E.C.E, IIIT Delhi, India

## **Motivation**

This poster proposes a new activation function that leverages two specific advantages of previous functions

- 1. Optimal parameter tunability: like the RELU function
- 2. Better noise robustness: similar to ELU function

# **Past Activation Functions**

1. <u>RELU [1]</u>:

# The forward Pass

$$f(z) = \begin{cases} z, & z > 0\\ \alpha. \tanh(\beta. z), & \alpha, \beta \ge 0 \end{cases}$$

where  $\alpha$  and  $\beta$  are learnt from the data distribution.

# The backward Pass

Derivative of the loss w.r.t  $\alpha$  of the  $j^{th}$  neuron in layer 'i'.  $dL = \frac{dL}{df_{i,j}} \times \frac{df_{i,j}}{d\alpha_{i,j}}$  (1) Output of the  $j^{th}$ neuron in layer 'i'.  $\frac{dL}{d\beta_{i,i}} = \frac{dL}{df_{i,i}} \times \frac{df_{i,j}}{d\beta_{i,i}}$  (2)

**P-TELU Activation Function** 

$$f(z) = \begin{cases} z, & z > 0 \\ 0, & z \le 0 \end{cases}$$

- 6 times faster convergence than tanh.
- Unit gradient in the positive plane obviates exploding/vanishing gradients.
- Zero gradient in the negative plane leads to de-activated neurons.

2. <u>L-RELU [2]</u>:

 $f(z) = \begin{cases} z, & z > 0 \\ \alpha z, & z \leq 0 \end{cases}$ 

where  $\alpha$  is a small positive constant

• Small gradient in negative plane solves the problem of de-activated neurons.



onnected (



• optimal  $\alpha$  needs to be set by hand.

## 3. <u>P-RELU [3]</u>:

 $f(z) = \begin{cases} z, & z > 0 \\ \alpha z, & z \le 0 \end{cases}$ 

where  $\alpha$  learnt from the data distribution

• The  $\alpha$  parameter of L-RELU is allowed to be learnt from the data.

### 4. <u>ELU [4]</u>:

$$f(z) = \begin{cases} z, & z > 0 \\ \alpha(e^z - 1), & z \le 0 \end{cases}$$

where  $\alpha$  is a small positive constant

The exponential function in ELU

Fig 2(a): KerasNet [5]

I(M

#### **Performance of KerasNet**

| Function | CIFAR-10 | CIFAR-100 |
|----------|----------|-----------|
| RELU     | 85.45    | 56.56     |
| ELU      | 85.84    | 57.97     |
| P-RELU   | 86.26    | 58.75     |
| P-TELU   | 86.5     | 59.76     |

 Table 1: Comparison of functions



#### Fig 2(b): ResNet-76 [6]

#### **Performance of ResNet-76**

| Function                              | CIFAR-10 | CIFAR-100 |
|---------------------------------------|----------|-----------|
| RELU                                  | 90.77    | 70.06     |
| ELU                                   | 91.26    | 69.05     |
| P-RELU                                | 90.99    | 69.05     |
| P-TELU, with $\alpha, \beta \ge 0$    | 91.52    | 70.13     |
| P-TELU, with $\alpha, \beta \ge 0.01$ | 91.16    | 70.63     |

#### **Table 2:** Comparison of functions



- providesanoiserobustdeactivationstateforlargenegative inputs
- optimal  $\alpha$  needs to be set by hand.



### References

[1] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." *Advances in neural information processing systems*. 2012.

[2] Maas, Andrew L., Awni Y. Hannun, and Andrew Y. Ng. "Rectifier nonlinearities improve neural network acoustic models." *Proc. ICML*. Vol. 30. No. 1. 2013.

[3] He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification." *Proceedings of the IEEE international conference on computer vision*. 2015.

[4] Clevert, Djork-Arné, Thomas Unterthiner, and Sepp Hochreiter. "Fast and accurate deep network learning by exponential linear units (elus)." *arXiv preprint arXiv:1511.07289* (2015).

[5] Veličković, Petar, et al. "X-CNN: Cross-modal convolutional neural networks for sparse datasets." Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016.

[6] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Acknowledgement

Authors gratefully acknowledge the research funding support (Grant Number: 1(7)/2014-ME&HI) from the Ministry of

Communication and IT, Govt of India for this research work.

