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Abstract: We tackle the problem of visual
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search under resource constraints. Existing

systems use the same embedding model to
compute embeddings for the query and gallery
images necessitating a hard accuracy-efficiency
tradeoff. We mitigate the tradeoff by proposing
a heterogenous visual search (HVS) system
leading to 80 fold and 23 fold cost reduction for
challenging retrieval problems on fashion
(DeepFashion2) and face (lJB-C) images. This is
achieved with marginal 0.3% and 1.6% drop in
accuracy. Key to developing an HVS system is to
ensure representational compatibility between
the query and gallery embedding models.
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Fig. 1 A homogeneous visual search
system with a shared embedding model.
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Fig. 2 A heterogeneous visual search
system with decoupled embedding models.
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Fig. 3 Accuracy (top) and efficiency (bottom) . & P Y
of a heterogeneous visual search system. Minimize BCT [1) Loss L = CE(B,C) + CH(A.B)

Compatibility through
architecture (CMP-NAS)
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Fig. 6 Face Retrieval on I)B-C.
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Fig. 7 Fashion Retrieval on DeepFashion-2.
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Fig. 8 Comparison with traditional NAS on the
Faces (left) and Fashion (right) datasets.

Fig. 5 Architecture level compatibility.

1. Sample architecture a ~ U (Q)[2].
2. Minimize BCT [1] Loss £ = CE(B, ") + CE(A,B) for a.
3. Maximize reward a* = argmax,(R)
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