
CUP: Cluster Pruning for Compressing Deep
Neural Networks

Rahul Duggal
Georgia Institute of Technology

rahulduggal@gatech.edu

Cao Xiao
Amplitude

danica.xiao@amplitude.com

Richard Vuduc
Georgia Institute of Technology

richie@cc.gatech.edu

Duen Horng Chau
Georgia Institute of Technology

polo@gatech.edu

Jimeng Sun
University of Illinois at Urbana Champaign

jimeng@illinois.edu

Abstract—We propose CUP, a new method for compressing
and accelerating deep neural networks. At its core, CUP achieves
compression by clustering and pruning similar filters in each
layer. For clustering, CUP uses hierarchical clustering which
allows for an elegant parameterization of model capacity through
a single hyper-parameter t. We observe that by increasing t, CUP
can dynamically reduce model capacity through non-uniform
layer-wise pruning leading to two advantages. First, CUP can
effectively compress a model to within the desired compute
budget through a simple line-search on t. Second, through a
simple extension, CUP can obtain the pruned model in a single
training pass leading to large savings in training time. On
Imagenet, CUP leads to a 2.47× FLOPS reduction on Resnet-50
with less than 1% drop in top-5 accuracy. Notably, in the retrain-
free setting, CUP-RF saves over 10 hours of training time on 3
GPUs, in comparison to state-of-the-art methods. The code for
CUP is open sourced1.

Index Terms—Pruning, Compact, Efficient, Neural Net

I. INTRODUCTION

Neural network compression is a critical enabler for the
deployment of powerful deep neural networks (DNNs) on the
edge. There are several ways to compress a DNN, including
pruning [1]–[3], low rank approximation [4], [5], knowledge
distillation [6], [7] and quantization [8], [9]. In this paper, we
focus on the problem of channel pruning which, in a nutshell,
aims to delete the “unimportant” filters of a neural network.

A typical channel pruning pipeline consists of three
steps [1]: (1) train the target DNN for some task, e.g.,image
classification; (2) identify and delete unimportant filters based
on an importance criterion; (3) retrain the pruned network to
recover accuracy lost due to pruning. This pipeline presents
two challenges: C1–non-uniform pruning: determining the
optimal layerwise pruning amount in step 2 is a combinatorial
problem, and intractable for modern DNNs with hundreds of
layers; and C2–long runtime: the retraining performed in step
3 slows down the pruning pipeline. To tackle C1, a line of
work [2], [10], [11] prunes the network uniformly across each
layer (e.g.,delete 50% filters in each layer), but this has shown
to be sub-optimal [12]. Other works use heuristics that are

1https://github.com/duggalrahul/CUP_Public

either computationally expensive [2], [13] or involve many
hyper-parameters, which are difficult to tune [12]. For tackling
C2, recent methods [14], [15] modify the pruning pipeline by
interleaving the pruning and training steps (i.e.,merging steps
1 and 2), thereby eliminating the need for retraining—we refer
to these as retrain-free methods.

With CUP, we enable layer-wise non-uniform pruning (ad-
dressing C1) whilst introducing only a single hyper-parameter
t. At its core, CUP employs hierarchical clustering to clus-
ter similar filters in each layer. Pruning is then achieved
by replacing each cluster by a representative filter. A key
advantage of our method is that the clustering strategy used
offers a principled way to determine the appropriate number
of clusters in each layer. Empirically, we find that t allows
for a smooth parameterization of the pruning amount. We
leverage this observation to extend CUP to the retrain-free
setting (addressing C2). Essentially, by gradually increasing t
during the initial training phase, CUP-RF (RF for retrain-free)
can incrementally prune a target model within one training
pass. This leads to large savings in training time, e.g.,saving
over 14 hours while training a ResNet-50 on ImageNet.

To summarize, our contributions in this paper are 1) We
propose CUP as a method for compressing deep neural
networks with the benefit of enabling non-uniform pruning
through a single hyper-parameter t. 2) We extend CUP to
CUP-RF whereby filters are pruned in the initial training pass
itself resulting in large savings of time cost during pruning.
3) We comprehensively compare our methods to the state-of-
the-art methods on large datasets (e.g.,Imagenet).

II. RELATED WORK

At a high level, pruning methods can be categorized based
on whether they lead to unstructured [16]–[19] or structured
[2], [3], [10], [11], [20] sparsity in the pruned network’s
weights. The latter reaps the benefits of pruning (e.g.,lower
flops, faster inference) through a matrix reshaping operation
completely avoiding the need of custom hardware as typically
required by the former. Keeping this advantage in mind, we
adopt structured pruning for CUP.978-1-6654-3902-2/21/$31.00 ©2021 IEEE
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Within structured pruning, a promising research direction
is channel pruning where the aim is to prune entire filters.
Existing channel pruning algorithms primarily differ in the
criterion used for identifying pruneable filters. Examples of
such criterions include pruning filters; with smallest L1 norm
of incoming weights [2]; with largest average percentage of
zeros in their activation maps [10]; using structured regular-
ization [11], [21]; or with least discriminative power [3]. A
drawback of these methods [2], [20] is that the number of
filters to prune in each layer is a hyper-parameter leading to
a combinatorial search space.

Another aspect of comparison is based on the time cost
of pruning. Traditionally, channel pruning employs a three-
step regime which leads to a high time cost (ref. C2 in
introduction). Recent works [14], [15], [22], [23] address this
issue by doing away with the retraining phase altogether and
we refer to these as retrain-free methods. Compared to these
works [14], [15], CUP-RF can further reduce the training
time. This is due to the fact that CUP-RF permanently
prunes some filters during training whereas previous methods
continue to train the pruned filters. This distinction leads to an
additional saving of up-to 10 hours for pruning a Resnet-50
on Imagenet.

III. THE CUP FRAMEWORK

The CUP pruning algorithm is a three-step process and
is outlined in Fig. 1. The first step computes features that
characterize each filter. These features are specific to the layer
type (fully connected or convolutional) and are computed from
the incoming and outgoing weight connections. The second
step clusters similar filters based on the features computed
previously. The third and last step chooses a single represen-
tative filter from each cluster and prunes all others.

Cluster filters in
each layer

Global threshold t

Compute per
filter features

Layer l Pruned layer l

STEP 1 STEP 2 STEP 3

Prune filters
from clusters

INPUT OUTPUT

Fig. 1: Three steps of the Cluster Pruning (CUP) algorithm.

A. Compute per-filter features (step 1)

The first step of CUP computes features that characterize
each filter. These features are computed using both the incom-
ing and outgoing connections of a filter. For further discussion,
we assume layers l−1, l and l+1 of the neural network contain
n,m and p filters respectively.
Fully Connected Layers (Fig. 2a). The lth fully connected
layer is parametrized by weights W̃ (l) ∈ Rm×n and bias
B

(l) ∈ Rm. For neuron i within this layer, we define it’s
feature set F̃ (l)
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Fig. 2: Computing features from the incoming and outgoing
weights of (a) fully-connected layer, (b) convolution layer.

where concat concatenates two vectors into one.
Convolutional Layers (ref. Fig. 2b). The lth convolutional
layer is completely parameterized by the 4-D weight tensor
W̃ (l) ∈ Rn×m×kh×kw and the bias vector B

(l) ∈ Rm. The
four dimensions of W̃ (l) correspond to - number of input
channels (n), number of filters in layer l (m), height of filter
(kh) and width of filter (kw). For filter i within this layer, we
define its feature set F̃ (l)

i,: ∈ Rn+p+1, as

F̃
(l)
i,: = concat(g(W̃

(l)
:,i,:,:), b
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Incoming features
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where g(X̃:,:,:) = [‖X̃1,:,:‖F , . . . , ‖X̃C,:,:‖F ]. (3)

Here g : Rc × Rd × Re → Rc computes the channel-wise
frobenius norm of any arbitrary 3D tensor X̃ .

B. Cluster filters in each layer (step 2)

Given feature vectors F̃
(l)
i,: for each filter i in layer l,

step 2 clusters filters within a layer using agglomerative
hierarchical clustering [24, Chapter 15]. This specific choice
of clustering affords a key benefit: The number of clusters
in each layer can be jointly controlled using a single hyper-
parameter t. In contrast some recent works use other clustering
techniques such as K-means++ [25] or spectral clustering [26].
These works face the combinatorial challenge of deciding the
appropriate number of clusters in each layer and are limited
to uniform pruning.

With hierarchical clustering, the clustering operation for
layer l begins by building a weighted binary tree representation
(dendrogram) for that layer. Assume that layer l contains m

filters. The algorithm starts off with m clusters C(l)
i ∀i ∈ [1,m]

i.e. each filter is a separate cluster. Then it iteratively builds the
tree by merging two closest clusters as per the Wards variance
minimization criterion. The criterion specifies to merge two
clusters C(l)

p ,C(l)
q that lead to the least decrease in intra-cluster

variance over all possible pairings of clusters in C(l). The
output of this phase is a weighted binary tree, or dendrogram,
whose each non-leaf node specifies a cluster of filters while
the edge weights encode the distance or dissimilarity between
its children.



Determining the number of clusters: After constructing the
dendrograms for each layer, we use edge weights to jointly
determine the number of clusters in that layer. Specifically,
the dendrograms for all layers are chopped at the same height
t which is a hyper-parameter. The higher the value of t, fewer
the number of clusters. Since CUP replaces each cluster with
a filter (presented in the next section), increasing t ultimately
leads to fewer remaining filters, or higher compression. To
summarize, the output of step 2 is a set of n(l) clusters C(l)

for each layer l, such that |C(l)| = n(l).

C. Prune filters from each cluster (step 3)

The third and last step chooses the representative filter from
each cluster and prunes all others. Given the set of filter
clusters C(l) for layer l, we formulate pruning as a subset
selection problem. The idea is to select the most representative
subset of filters S(l)r from each filter cluster C(l)

r ∈ C(l).
Pruning then corresponds to replacing all filters in C(l)

r by S(l)r .
Motivated by prior work, several subset selection criterion can
be formulated as below.
• Norm based : [2] prune filters based on the l1 norm

of incoming weights. This criterion amounts to selecting
the top k% filters having the highest feature norm as the
cluster representative.

• Zero activation based : [10] prune filters based on the
average percentage of zeros (ApoZ) in their activation
map when evaluated over a held-out set. This criterion
amounts to choosing the top k% filters having least ApoZ
as the cluster representative.

• Activation reconstruction based : [20] prunes filters
based on its contribution towards the next layer’s acti-
vation. This criterion amounts to choosing the top k%
filters having maximum contribution.

In our work, we use a norm based criterion to select a subset
S(l)r from a cluster of filters C(l)

r with filter i having features
F̃

(l)
i,: . This criterion is described through the equation

S(l)r = argmax
i∈C(l)

r

‖F̃ (l)
i,: ‖2, (4)

where argmax implies that we select a single representative
neuron from each cluster. Thus, post pruning, the number of
clusters in layer l equals the number of remaining filters.

D. Extension to retrain free setting (CUP-RF)

Similar to previous methods, CUP achieves compression
through a three step pipeline involving training, pruning and
retraining. However, with a slight modification, CUP can
completely avoid any fine-tuning whatsoever. The modified
algorithm is termed CUP-RF for CUP “Retrain-Free”. The
idea is to gradually reduce the model capacity during the
initial training phase. This is achieved by calling CUP at
the beginning of each epoch, with a monotonically increasing
schedule for t. We find that the following linear schedule for
t(e) (value of t at epoch e) suffices for good performance.

t(e) = k.e+ b (5)

Here k, b are hyper-parameters controlling the slope and
offset of the linear pruning schedule and are determined
through a linesearch.

IV. EXPERIMENTS

A. Training details, base models & evaluation metrics

We evaluate our methods against prior art on CIFAR-10
and ImageNet. For all networks trained on CIFAR, we use
the training hyper-parameter settings from [11]: a batch size
of 64, a weight decay of 10−4, total epochs of 160, and an
initial learning rate of 0.1 which is divided by 10 at epochs 80
and 120. On ImageNet, we train with a batch size of 256 for
90 epochs. The initial learning is set to 0.1, which is divided
by 10 at epochs 30 and 60. We use a weight decay of 10−4.
After compression, the pruned model is retrained with a tenth
of the initial learning rate while other hyper-parameters remain
the same. Our baseline models are:
• VGG-16 [27]: trained up to 93.64% on CIFAR-10.
• ResNet-56 [28]: trained up to 93.67% on CIFAR-10.
• ResNet-{18,34,50} [28]: We use the official PyTorch

implementations where the models have 69.87%, 73.59%
and 75.86% Top-1 accuracies on ImageNet respectively.

To measure compression, we use the standard flops reduction
metric defined as FR = Fbase

Fcompressed
where F is number of

multiply and adds to score one input.

B. Verifying two key benefits of pruning with CUP

Single hyper-parameter control. In Figure 3, we plot the
number of remaining filters in each layer after pruning a
VGG-16 on Cifar-10 with CUP (t = 0.9). Using a single
hyper-parameter t, CUP accomplishes non-uniform pruning
across the layers (see green bars). As t increases, CUP offers
a desirable, largely monotonic effect on: (1) test accuracy
reduction; (2) parameter reduction; (3) flops reduction; and
(4) CPU wall-clock speedup, as show in Figures 4a–d.
Training time speedup. Table I shows our approach (bold
font) achieves the shortest training time, best top-1 accuracy,
and the most flop reduction, in both the retrain-allowed
(marked with 3) and the retrain-free settings (7), for a ResNet-
50 trained on ImageNet. In the retrain-free setting (Table I,
bottom row), CUP-RF saves 14 hours when compared to
that of the uncompressed model (51.6 v.s. 66 hours). All the

Original VGG-16

CUP(t=0.9)
Li et al. [2]400

500

300
200
100

0

# Filters post pruning (Lower is better)

1 2 3 4 5 6 7 8 9 10 11 12 13
Layer Index

Fig. 3: The number of filters remaining in each layer post
pruning a VGG-16 on CIFAR-10.
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Fig. 4: Compressing a VGG-16 on CIFAR-10 using CUP. We show the effect of pruning with a larger t on (a) test accuracy,
(b) parameters, (c) flops, and (d) inference wall-clock speedup.

retrain-free methods generally save over 60 GPU hours com-
pared to their traditional 3-step retrain-allowed counterparts.
However, retrain-allowed models are generally more compact
and also achieve a better Top-1 accuracy.

Method Retrain? Top-1 (%) FR (×)
Training Time
(GPU Hours)

Resnet-50 - 75.86 1.00 66.0
SFP [14] 3 62.14 2.39 122.4
GM [15] 3 74.83 3.81 122.7
CUP (ours) 3 75.07 3.86 116.8
SFP [14] 7 74.01 1.73 61.8
GM [15] 7 74.13 2.15 62.2
CUP-RF (ours) 7 74.34 2.21 51.6

TABLE I: For a ResNet-50 trained on ImageNet, our approach
(bolded) achieves the shortest training time, best top-1 accu-
racy, and most flop reduction, in both the retrain-allowed (3)
and the retrain-free settings (7). FR means flops reduction.

Method Retrain? ResNet-56 VGG-16
FR (×) Acc (∆%) FR (×) Acc (∆%)

L1 [2] 3 1.37 -0.02 1.51 -0.15
CP [20] 3 2.00 -1.00 2.00 -0.32
GM [15] 3 2.10 -0.33 - -
GAL [22] 3 2.45 -1.68 1.82 -0.54
NS [11] 3 - - 2.04 -0.32
CUP (ours) 3 2.77 -0.40 3.70 -0.70
SFP [14] 7 2.10 -1.33 - -
GM [15] 7 2.10 -0.70 - -
VCNP [23] 7 1.25 -0.78 1.64 -0.07
GAL [22] 7 1.59 -0.28 1.82 -3.18
CUP-RF (ours) 7 2.12 -0.31 3.15 -0.40

TABLE II: For ResNet-56 and VGG-16 models trained on
CIFAR-10, our approach (bolded) leads to highest flops reduc-
tion (FR), in both the retrain-allowed (3) and the retrain-free
settings (7). FR means flops reduction.

C. Comparison results on CIFAR-10 and ImageNet
Tables II and III present the results for compressing ResNet-

56, VGG-16 models on CIFAR-10 and ResNet-{18,34,50}
models on ImageNet, under the retrain-allowed and retrain-
free settings.

Model Method Retrain? FR (×) Acc. (∆%)

Top-1 Top-5

R
es

N
et

-1
8 GM [15] 3 1.71 -1.87 -1.15

COP [29] 3 1.75 -2.48 -
CUP (Our) 3 1.75 -1.00 -0.79
SFP [14] 7 1.71 -3.18 -1.85
GM [15] 7 1.71 -2.47 -1.52
CUP-RF (ours) 7 1.75 -2.37 -1.40

R
es

N
et

-3
4 L1 [2] 3 1.31 -1.06 -

GM [15] 3 1.69 -1.29 -0.54
CUP (ours) 3 1.78 -0.86 -0.53
SFP [14] 7 1.69 -2.09 -1.29
GM [15] 7 1.69 -2.13 -0.92
CUP-RF (ours) 7 1.71 -1.61 -0.89

R
es

N
et

-5
0 SFP [14] 3 2.15 -14.0 -8.20

MP [30] 3 2.05 -1.20 -
CUP (ours) 3 2.47 -1.17 -0.81
SFP [14] 7 1.71 -1.54 -0.81
GM [15] 7 2.15 -2.02 -0.93
CUP-RF (ours) 7 2.20 -1.47 -0.88

TABLE III: For ResNet-18/34/50 models trained on ImageNet,
our approach (bolded) leads to highest flops reduction (FR)
with minimal accuracy drop, in both the retrain-allowed (3)
and the retrain-free settings (7). FR means flops reduction.

Retraining-allowed (rows with 3). Under this traditional
three-stage pipeline, our approach consistently leads to highest
flops reduction with a lower drop in accuracy.
Retrain-free (rows with 7). Even when retraining is not
allowed, our approach leads to highest flops reduction with
a comparable, or in many cases, lower drop in accuracy.

V. CONCLUSION

We proposed a new channel pruning based method for
model compression that prunes entire filters based on sim-
ilarity. We showed how hierarchical clustering can be used
to enable layer-wise non-uniform pruning whilst introducing
only a single hyper-parameter. Using multiple models and
datasets, we demonstrated that CUP achieves the highest flops
reduction with the least drop in accuracy. Further, CUP-RF
leads to large savings in training time with only a small drop in
performance. A limitation of the current work is that we used
simple yet effective linear trajectory for setting t in CUP-RF.
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